

COVER CROPS TO REDUCE SOIL EROSION IN MAIZE AND IMPROVE SOIL HEALTH

Agnese Mancini Dr Mark Pawlett and Dr Lynda Deeks

8 September 2016

www.cranfield.ac.uk

1. Quantify the role of cover cropping towards reducing surface runoff and soil loss.

 Quantify the cover crop/soil microbiology interactions and subsequently the role of this interaction towards improving soil health and controlling soil erosion.

 Use information gained to critically evaluate the viability and practicability of using cover crops in maize cultivations. Field experiment 1 (October
2014 - March 2015) and field experiment 2 (July 2015 to March 2016)

Soil analysis: 2 soil sampling events November 2015 and in March 2016

Conclusion from field experiment and laboratory analysis

Erosion plot design

Experimental layout

- 1. Italian ryegrass (A)
- 2. Italian ryegrass and

hairy vetch (B)

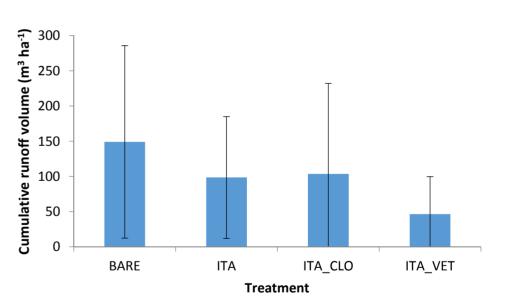
3. Italian ryegrass and

berseem clover (C)

4. Control: no cover

crops (D)

Timelines


Relevant agronomic events	Runoff collection period	Sampling event number		
Maize drilled in May 2015	28 July 2015 – 15 October 2015	1 ^{rst}		
Cover crops sown June 2015	27 November 2015 2015 - 21 December 2015	2 nd		
Maize harvested in October 2015	21 December 2015 - 13 January 2016	3 rd		
(wheelings)	13 January 2016 – 16 February 2016	4 th		
Cover crops terminated in March 2016	16 February 2016 – 15 March 2016	5 th		

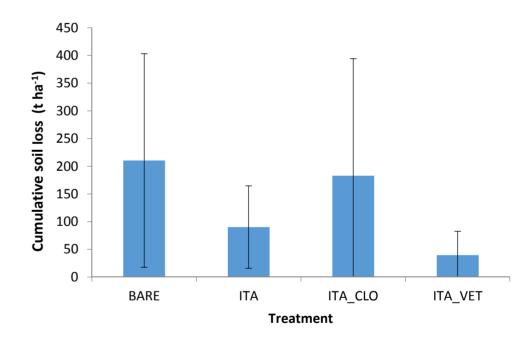
Field experiment 2 Runoff

Sampling event number	Runoff collection period	p values
1 ^{rst}	28 July 2015 – 15 October 2015	0.36
2 nd	27 November 2015 2015 - 21 December 2015	0.37
3 rd	21 December 2015 - 13 January 2016	0.17
4 th	13 January 2016 – 16 February 2016	0.44
5 th	16 February 2016 – 15 March 2016	0.27

Cumulative runoff from July 2015 to March 2016

Vertical bars indicate 95% Confidence Intervals

No statistical differences p< 0.05


6

Field experiment 2 Soil loss

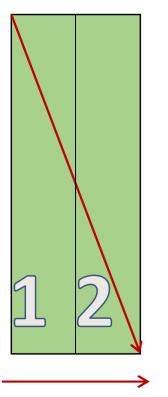
Sampling event number	Runoff collection period	p values
1 ^{rst}	28 July 2015 – 15 October 2015	0.27
2 nd	27 November 2015 2015 - 21 December 2015	0.61
3 rd	21 December 2015 - 13 January 2016	0.1
4 th	13 January 2016 – 16 February 2016	0.51
5 th	16 February 2016 – 15 March 2016	0.51

Cumulative soil loss from July 2015 to March 2016

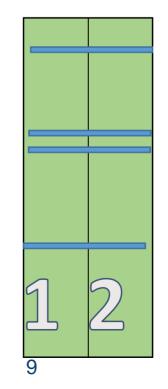
Vertical bars indicate 95% Confidence Intervals

No statistical differences p< 0.05

Field experiment 2 Soil loss

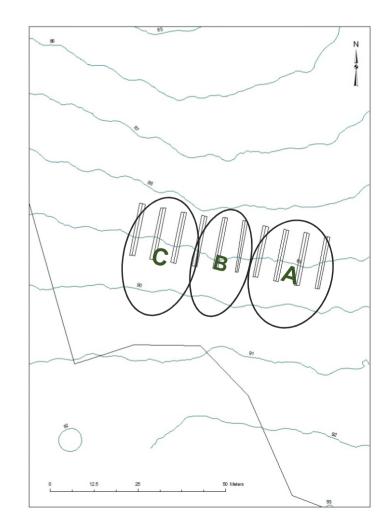

Sampling event number	Runoff collection period	p values
1 ^{rst}	28 July 2015 – 15 October 2015	0.27
2 nd	27 November 2015 2015 - 21 December 2015	0.61
3rd	21 December 2015 - 13 January 2016	0.1
4 th	13 January 2016 – 16 February 2016	0.51
5 th	16 February 2016 – 15 March 2016	0.51

	Average soil erosion rate (t ha ⁻¹ yr ⁻¹)
BARE	0.83
ITA	0.35
ITA_CLO	0.72
ITA_VET	0.15

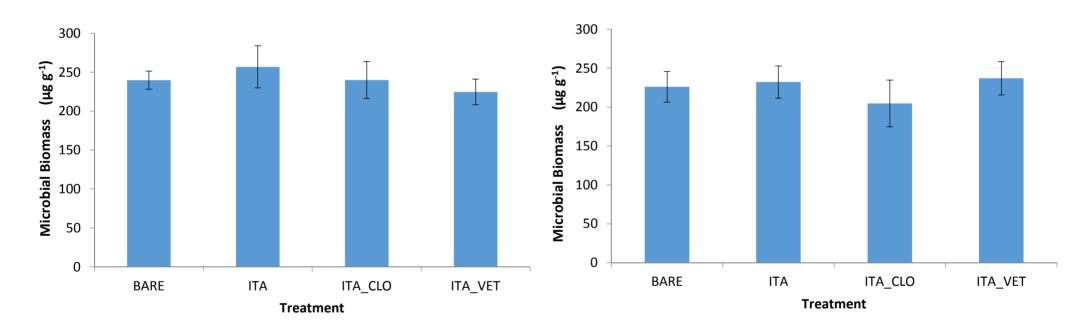


Linear correlations

- Soil loss and runoff production are correlated (r= 0.9)
- No correlations wheelings and soil loss or runoff
- No correlation slope characteristics soil loss or runoff

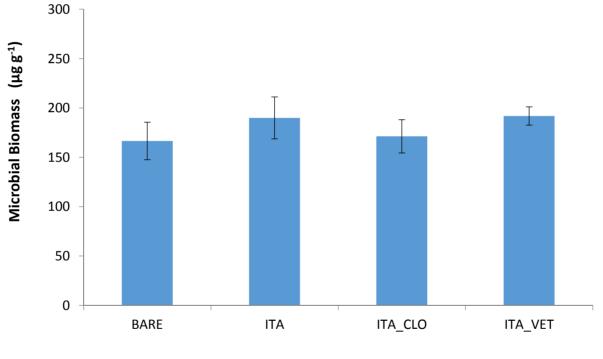


Wheelings


Location of the plots on the slope

Sampling event number	Runoff p values	Soil loss p values	
1 ^{rst}	0.85	0.55	28 July 2015 – 15 October 2015
2 nd	0.01	0.00	27 November 2015 2015 - 21 December 2015
3rd	0.84	0.92	21 December 2015 - 13 January 2016
4 th	0.01	0.089	13 January 2016 – 16 February 2016
5 th	0.02	0.18	16 February 2016 – 15 March 2016

Microbial Biomass in November


Soil collected in the wheelings. Vertical bars indicate 95% Confidence Intervals.

Soil collected outside the wheelings. Vertical bars indicate 95% Confidence Intervals.

No statistical differences p< 0.05

Microbial Biomass in March

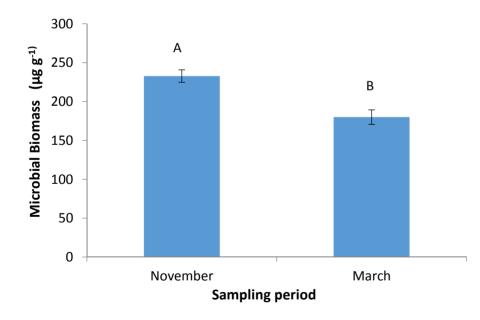
Treatment

Vertical bars indicate 95% Confidence Intervals.

No statistical differences p< 0.05

Microbial Biomass comparison

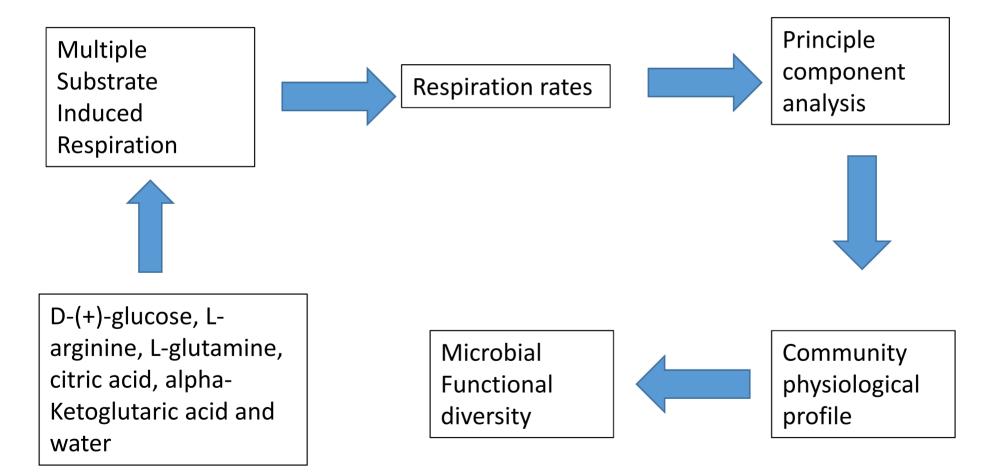
Univariate Tests of Significance for Microbial Biomass Carbon. In colour red p<0.05.


Effect	SS	Degr. of	MS	F	р	_∓ 250 -	A	B
Intercept	17663 32	1	1766332	3348.50	0.00	୍ <u></u> ମ୍ମ ₂₀₀ –	I	
Collection location	2359	1	2359	4.47	0.04	Biomassing 150 -		
Collection Period	20369	1	20369	38.61	0.00	- 001 Micropial		
Treatment	3727	3	1242	2.36	0.08	50		
Error	28485	54	527			0	Outside wheelings	In wheeling

300 ¬

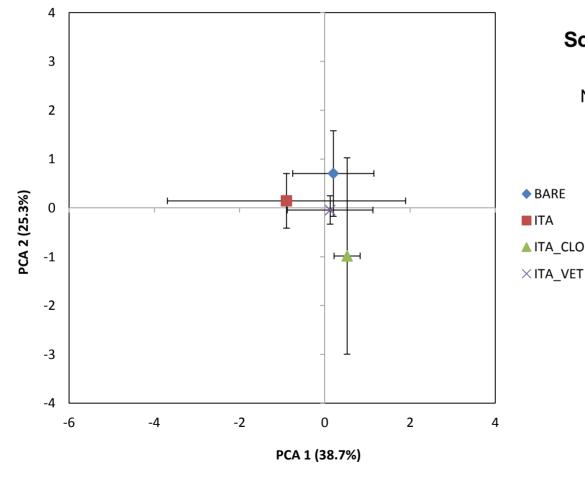
Vertical bars indicate 95% Confidence Intervals. Letters refers to homogeneous groups.

Microbial Biomass comparison


Weather data from Ross-On-Wye weather station (MetOffice), in bold the months when soil samples were collected.

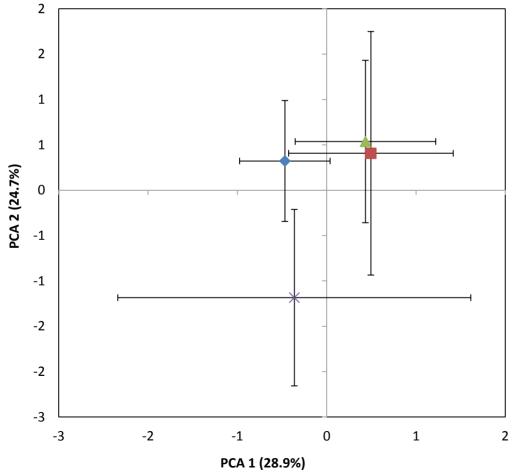
Year	Month	Max Temp. (°C)	Min Temp. (°C)	Air frost (days)	Rain (mm)	Sun (hours)
2015	7	21.2	12.2	0	42.9	191.8
2015	8	20.5	12.2	0	92.5	145.4
2015	9	18.2	8	0	36.3	171.4
2015	10	15.3	7.5	0	38	78
2015	11	12.9	7.4	3	65.7	25.9
2015	12	13.1	8.3	0	125.9	24.9
2016	1	9.2	3.1	5	115.4	48.2
2016	2	9.1	2.1	7	79.5	96.5
2016	3	10.4	1.9	8	68	124.3

Vertical bars indicate 95% Confidence Intervals. Letters refers to homogeneous groups.



Functional profile of the microbial community

Principle component analysis of the functional profile of the microbial community


Soil collected outside the wheelings

No statistical differences p< 0.05

Principle component analysis of the functional profile of the microbial community in March

Soil collected outside the wheelings

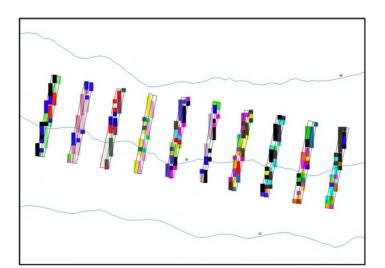
No statistical differences p< 0.05

Vertical bars indicate 95% Confidence Intervals.

- BARE
- ITA
- ▲ ITA_CLO
- $\times \mathrm{ITA}_\mathrm{VET}$

Objective 1: Cover crops for erosion control

- Answer not clear due to variability and complexity
- No evidence of different erosion patterns between cover crop species
- Microtophography could play a important role on shallow slopes
- Limited scale (time and space) of the erosion plots and the lack of natural barriers could compromise the integrity of the results


Objective 2: Cover crops for soil heath improvement

• Cover crops do not have an immediate affect on soil microbial community

Aggregate stability test of the samples collected in November

Microtophograpy analysis

	if ten.sum() > 1:									
	# Find next zero and end event									
	<pre>end_index = next_zero_index(df, nz + 10) out.append(df,iloc[nz:end index].copy())</pre>									
	nz = end index									
	# Keep scanning									
	# Keep scanning #scan(df, end îndex + 1)									
	#scan(af, ena_index + 1)									
	if nz + 10 < len(df):									
	scan(df, nz + 1)									
	scan(data, 0)									
	for i, frame in enumerate(out):									
	frame['no'] = i + 1									
	frame['no'] = i + 1									
	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe</pre>									
	frame['no'] = i + 1									
	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out)</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out) # Double check</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out)</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out) # Double check</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out) # Double check print data.lloc[987:1000] Time Rain 987 988.0 0.0</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Nerge the collected data intp a single dataframe out = pd.concat(out) # Double check print data.iloc[987:1000] Time Rain 987 988.0 0.0 988 989.0 0.2</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out) # Double check print data.iloc[987:1000] Time Rain 987 988.0 0.0 988 989.0 0.2 999 990.0 0.0</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out) # Double check print data.iloc[987:1000] Time Rain 987 988.0 0.0 988 989.0 0.2 989 990.0 0.0 989 990.0 0.0 990 991.0 0.2</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe Out = pd.concat(Out) # Double check print data.iloc[987:1000] Time Rain 987 988.0 0.0 988 989.0 0.2 999 990.0 0.2 999 991.0 0.2 991 991.0 0.2</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe out = pd.concat(out) # Double check print data.iloc[987:1000] Time Rain 97 988.0 0.0 988 989.0 0.2 989 990.0 0.2 990 991.0 0.2 990 991.0 0.2 991 992.0 0.0 991 992.0 0.0</pre>									
In [4]:	<pre>frame['no'] = i + 1 # Merge the collected data intp a single dataframe Out = pd.concat(Out) # Double check print data.iloc[987:1000] Time Rain 987 988.0 0.0 988 989.0 0.2 999 990.0 0.2 999 991.0 0.2 991 991.0 0.2</pre>									

Correlation rain data and runoff data

Estimation of ground cover using digital imagery

Future laboratory analysis

Analysis	Soil sampling	Reasoning	Reference
рН	November 2015 and March 2016	Effect of CC on soil baseline and effect of baseline on other laboratory experiments	NR-SAS/SOP 6
Total and organic Carbon and total Nitrogen	November 2015 and March 2016	Effect of CC on soil baseline and effect of baseline on other laboratory experiments	NR-SAS/SOP 9
Organic matter by loss on ignition	November 2015 and March 2016	Effect of CC on soil baseline and effect of baseline on other laboratory experiments	NR-SAS/SOP 7
Phospholipids fatty acid analysis (PLFA)	November 2015 and March 2016	Composition of the soil microbial comunity	041214/MP
Fungal biomass by Ergosterol	November 2015 and March 2016	Role of fungi in soil erosion and aggregate stability	Grant & West 1986
Glomalin related proteins	November 2015 and March 2016	Role of fungi in soil erosion and aggregate stability	Wright & Upadhyaya 1998

		2016						2016						2017			
lask name	Preogress to date	July		August		Septe	mber		Octo	ber		Novembe	r	Decemb	er	January	
Lab analysis	70%																
Paper writing	0%																
	I		U	odate mee	eting wit	h DBT	A	nnua	al Re	view							
i ack name	Preogress to date	Febru	uary	March		May			June	2	017	July		August		Septemb	er
Lab analysis	0%	6															
Paper writing	0%	6															
Thesis writing	40%	6															

International conference (Environmental Connection Conference, Atlanta, Georgia)

writing

Objective 1: Cover crops for erosion control

- Long term experiment
- Influence of soil moisture content on cover crops efficiency
- Influence of CC on water infiltration
- Bigger plot scale
- Different soil types
- Different slope gradients

Objective 2: Cover crops for soil heath improvement

- Long term experiment
- Mycorrhizal fungi
- Multiple locations
- Focus in detail on one ecosystem service

Thanks!